2018’s Amazing Accomplishments in Climate Science

Print Email

Source: omada / Getty Images

11. 3.2 million electric cars are in use worldwide

Electric cars have been around since the dawn of the automobile — the first one invented in the 1830s. By the 1980s-1990s, battery technology had advanced enough to capture the attention of big automakers like General Motors and Toyota. In the ’80s and ’90s, battery technology had advanced enough to capture the attention of big automakers like General Motors and Toyota. More recently, Nissan’s LEAF (introduced in 2010) became the world’s best-selling electric car, with nearly 300,000 units sold globally by 2017.

American automaker Tesla Inc. also captured the world’s attention with its sleek, tech-heavy luxury electric cars. Today, every major automaker is getting into the electric vehicle business. Earlier this year, a survey by Germany’s Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW) found that the world has a record 3.2 million electric cars, including 1.2 million in smog-choked China.

Source: sakkmesterke / Getty Images

12. Nuclear fusion could be used for electricity within 15 years

Nuclear fusion, a theoretical source of zero-carbon energy, perpetually seems to be an more innovation of the future rather than the present. The fusion process involves forging lighter elements to form heavier elements, a process that leads to a release of energy. This is done by squeezing hydrogen atoms until they fuse to form helium.

The problem is the process requires such extreme temperatures scientists need to overcome two issues: how to avoid the hot material from melting any solid machines, and how to reach a reaction that would produce more energy than was used to create the heat. Scientists hope magnets could help solve both problems and plan to build the first fusion reactor connected to a power grid by the early 2030s.

Source: Courtesy of RMIT University

13. Creation of a rechargeable proton battery prototype

Earlier this year, researchers at Australia’s RMIT University announced a breakthrough in environmentally friendly energy storage technology that has the potential to change the way we power our homes, gadgets, vehicles, and even entire electric grids. Called a “proton battery,” the technology is complicated but essentially involves storing hydrogen in a carbon electrode connected to a so-called reversible fuel cell that produces electricity.

Crucially, the battery does not require lithium ion, the material used in current energy storage devices, from electric car battery packs to smartphone batteries. Instead, it relies on an electrode made from cheap and abundant solid carbon. The researchers were able to prove their concept with a small proton battery that was able to store as much energy as a comparably sized lithium ion battery.

The next step is usually the biggest challenge in such research: the ability to scale up the technology from inside a research lab to a commercially viable enterprise. Time will tell if the proton battery can replace lithium-ion ones.

Source: DennisM2 / Flickr

14. Breakthrough in diesel systems technology.

Despite all the interest in and promises of electric vehicle technology, the number of battery-powered passenger cars remains a sliver of the total number of cars. According to the International Energy Agency, electric cars (including plug-in gas-electric hybrids) command only about 1% to 2% (or less) of local market share, except in Norway, Iceland, and Sweden.

This means that for the foreseeable future, reducing pollution from internal combustion engines is still an important part of combating greenhouse gas emissions. Research continues to lower emissions from diesel engines. This year, German company Bosch claimed a breakthrough in making diesel engines cleaner through the use of new fuel-injection technology and air and temperature management.

The company says the new technology greatly reduces nitrogen oxide emissions, reducing this greenhouse gas to 13 milligrams per kilometer, way below the EU mandate of 120 mpk by 2020. Cleaner internal combustion engine tech is vital until the world adopts vehicle electrification or some other technology en mass, which is still a long way off.

Source: BlackJack3D / Getty Images

15. Advances in spintronic research to lead to new computing technology

Computers can produce a lot of heat, and energy-sucking data centers both produce and consume a lot of energy to keep the servers from overheating. A new research, however, might change all that by creating new computing devices – spintronic devices — that generate little heat and do not use much electricity.

Spintronics research has had another breakthrough this year, when engineers at the University of California, Riverside, were able to use spintronic components made of low-cost metals and silicon, rather than expensive ones. Unlike electronic devices, like the personal computer, spintronics devices utilize the intrinsic angular motion of an electron, or spin, to process, transmit and store data. Spintronic computers would be far more powerful and require no energy to maintain data in memory. Spintronics research is still very much in its early development stage.