2018’s Amazing Accomplishments in Climate Science

Print Email

Source: Seabed

16. Seabed 2030 takes off

Considering how far we have progressed in exploring the world around us, from remote Antarctica to the moon, it is almost inconceivable to think that more than 80% of the world’s oceans and seas is unexplored. With new deep-sea drone technology, new discoveries of deep-sea life seem to happen regularly.

Earlier this year, researchers announced a new project to completely map the world’s ocean floors by 2030. Appropriately called Seabed 2030, the project aims to amass data from underwater drones, fishing boats, merchant ships, and even shipwreck explorers to draw a complete picture of the undersea world. Currently about 93% of the world’s underwater depths beyond 200 meters (650 feet) is uncharted, meaning that we know more about the surfaces of the moon and Mars than we do about what lies beneath the waves. The research is of particular importance these days as we learn more about the oceans’ influence on climate.

Source: Phuchit / Getty Images

17. Low-cost air quality stations

Florence, Italy, is known more for its Renaissance art and architectural heritage than technological innovation. However, a group of researchers at the local Institute of Biometeorology announced in August the result of testing a low-cost, accurate air quality monitoring device that promises to increase the number of air quality measurement points that can complement official pollution-monitoring stations, therefore providing a more detailed picture of pollution levels in urban environments.

The researchers developed an inexpensive circuit board and tested its ability to measure particulate matter – the microscopic bits of lung-irritating smog emitted from internal combustion engines and industrial activity. They found that the inexpensive sensor was as accurate as more costly equipment. Additional testings of the device continues to verify its accuracy in measuring other pollutants like carbon dioxide and nitrogen oxide.

The lunchbox-sized monitor, known as the AIRQuino, is designed to last at least a year without maintenance and allows the circuit board to be swapped out about every two years. The innovation comes as prices for electronic sensors are plunging. Today, a new generation of inexpensive pollution monitors cost as little as $250, though the accuracy of their measurements vary considerably.

Source: Kerkez / Getty Images

18. Smartphones could be used to anticipate weather patterns

Though the use of data from smartphones has raised privacy concerns, one way smartphone sensor data could be used, according to researchers at Tel Aviv University, is to anticipate weather patterns that can lead to devastating and fatal flash floods. Some 3 billion to 4 billion smartphones worldwide, they said, are equipped with sensors that are constantly monitoring the surrounding environment, including atmospheric pressure, humidity, and temperature.

Combined, the computing power of these smartphones, if the data were shared, would offer a “staggering” amount of information compared to the 10,000 or so weather stations, according to Prof. Colin Price, who led the research. Price envisions a system not unlike another Israeli product – Waze, the GPS navigation and traffic monitoring app – in which smartphone users share the environmental data collected by smartphone sensors to monitor and predict flash floods, which are becoming more pernicious as global temperature rise.

Source: panic_attack / Getty Images

19. Solar panels can now generate electricity from raindrops

Energy harvested directly from sunlight is becoming more and more common. One estimate by SolarPower Europe says demand for electricity produced by solar power worldwide reached 100 gigawatts last year, a 30% rise from the previous year. In 2009, total global solar power installations amounted to less than 10 gigawatts of output, according to the International Energy Agency. (One gigawatt is estimated to be able to power about 750,000 homes for year, according to the U.S. Department of Energy.)

The global growth in solar power installations is being led by China, whose policymakers are hoping to reduce urban air pollution through the aggressive promotion of electric cars and alternative energy sources. As the leader in photovoltaic energy, it should be no surprise that Chinese researchers are trying to find ways to improve solar panels. Engineers at Soochow University in Suzhou demonstrated earlier this year a solar panel that can also harvest power from the static created by raindrops that roll down the surface of the panel.

By using so-called triboelectric nanogenerators, energy harvesting devices that convert mechanical energy into electricity, the engineers were able to simplify the process by using one of the solar panels polymer layers as the electrodes for both the nanogenerators and the solar cell.

Source: Creative Commons

20. Cleaning efforts of the Great Pacific Garbage Patch

The world’s oceans currently have at least five massive garbage patches where trash is drawing into gigantic, slowly rotating gyres created by oceanic currents. The largest of them, roughly halfway between Hawaii and California, is a swirling patch of mostly plastic debris – fast food containers, plastic bottles, shopping bags, broken toys, fishing nets, you name it – twice the size of Texas.

In September, a 2,000-foot-long floating system was deployed to the Pacific garbage patch in an attempt to herd the garbage into a smaller area, allowing ships to easily collect the waste to bring it back to shore for better disposal. This giant floating sieve is the product of Boyan Slat, a Dutch activist who was inspired after seeing Greece’s pristine Mediterranean waters sullied by plastic garbage. Slat’s Ocean Cleanup Project has received funding from several benefactors, including Salesforce founder Marc Benioff.

The system, known as System 001, arrived at the garbage patch in October and has been “deployed into operational configuration,” according to Ocean Cleanup Project’s most recent update. Will the project work? Some say it is unlikely unless cleanup operations coincide with real efforts to curb the roughly 2 million tons of plastic debris that is dumped into the ocean every year. But advocates argue the project does not harm and is worth a try.